
数据标注 从难易程度方面可划分为常识性标注与专业性标注。例如,地图识别领域的标注多为常识性标注,标注道路、路牌、地图等数据,语音识别标注也多为常识性标注。做该类型标注工作难点在于需要大量标注训练样本,因为应用场景多样且复杂,对标注员无专业技能要求,主要是认真负责,任务完成效率快、质量高的即为好的标注员。
医疗诊断领域标注多为专业性标注,因为病种、症状的分类与标注需要有医疗专业知识的人才能做,招聘领域标注也属于专业性标注,因为标注员需要熟知招聘业务、各岗位所需的知识技能,还需了解HR招人时的关注点,才能判断简历是否符合职位的招聘要求。该类型的标注工作需要有招聘领域专业知识的标注员,或者称为标注专家,标注工作的难点比较多,例如选拨培养合适的标注员、标注规则的界定、标注质量的控制等多方面。
数据标注的类型主要是常见的打标签分类标注、机器视觉中的标框标注、自动驾驶中的区域标注、人脸识别描点标注以及其他个性化标注。
数据标注从标注目的方面可划分为评估型标注与样本型标注。
评估型标注一般是为了评估模型的准确率,发现一些Badcase样例,然后优化算法模型,该类型标注工作为了节约标注资源可控制标注数量,一般情况下标注千量级的数据,样本具有统计意义即可,标注完成后需要统计正确率,以及错误样例,该类型标注的重点是错误样例的原因总结,分析每个Badcase出现的原因,并将原因归纳为不同的分类,有了原因分析方便算法同学分类型分批次的优化模型。
样本型标注即为模型提供前期的训练样本,作为机器学习的输入,该类型标注工作需要标注大量数据,一般情况下需要标注万量级的数据。为了样本的均衡性,标注样本多是随机抽取的,这样做的优点是可在一定程度上避免样本偏差,但缺点是要标注大量数据。如果是文本型样本,有时可借助算法抽取一些高频、高质量样本进行标注,这样可一定程度上减少标注工作量,但可能存在样本偏差。总之样本型标注是个苦力活,业界有句话这么说的:如果你和一个人有仇,那么劝他去干标注吧。
数据标注从标注对象方面可划分为文本标注、图像标注、语言标注、视频标注,从标注方式方面可划分为分类标注、标框标注、描点标注,这些标注分类基本都属于标注形式的差异,没有较强的专业度。
上一篇
下一篇